预测中通常采用的模型包括回归模型(线性回归、多元回归等)、时间序列模型(ARIMA、ARMA、AR、MA等)、Kalman滤波模型、模糊集模型、人工神经网络模型等。
1985年Rawlingr指出对蓄冰系统,为了防止冰在热天提前耗尽,一种预测热天的办法是观察当天早晨的气温(主观预测法)。例如,在新泽西地区,如果上午8:00的温度为29℃,统计数据表明当天很可能接近“设计日”[15]
用于客观天气预测的模型输出统计(Model output statistics)可以给出精确的未来天气撒尼“然而,这种方法需要大量的气象数据和超级计算机;而不适于在线控制。实时控测。气象参数和负荷预测的方法大多数基于最小M乘回归分析。1989年MacA-rthur[16]等利用以前测量的环境温度和当地气预报的最高、最低温度来预测未来温度曲线。 1995年Kawashima等采用预报的最高,最低温度和ASHRAE建议的形状系数预测环境逐时温度[17].因为利用了更有效的信息,他们的方法优于仅采用过去测量气象数据的方法。Chen对天气预报的最高、最低温度作了更详尽的修正。由数据采集系统实测室外温度,并根据算法是未来几个小时的逐时温度;同时将室外温度变化分为上升阶段和下降阶段,分别计算各时刻的形状系数;二者共同用于室外温度的预测,取得了较好的效果。
2.2 逐时太阳辐射的预测
1996 年,Kawshima将天气分为晴、阴、多云、雨四种典型情况。首先根据实测数据拟合出用于预测次日太阳辐射总量的多项式,然后乘以逐时的系数来预测次日的太阳辐射[18].Chen将太阳辐射细分为10个级别,并给出了它们的相对于各时刻历史最大太阳辐射强度的中值,用于太阳辐射的预测,他发现对于晴朗小时或天晴间多云(sunny hour or day)预测效果较好;而对于不确定的天气状况,如晴间多云(clearing and clouding)则有一定的偏差[14].在建筑物能耗预测结果的报告中[19],前六名分别为英国剑桥卡文迪许实验室的Mackay[20]、瑞典 Lund大学理论物理系的Ohlsson[2]、普林斯顿大学中心研究实验室汽车研究和发展公司的Feuston[22],南非的Stevenson [23]、日本东京电气工程部的Iijima[24]、日本东京技术大学的Kawashima[25].他们分别在各自的文章中介绍了自己的模型和预测方法。其中,只有Iijima采用了非ANN的分段线性回归方法。虽然算法取得了较为满意的结果,但是作者指出线性算法的在解决实际非线性问题时,还是有限局性的。
温度和太阳辐射是影响建筑物冷负荷的主要因素,其他参数的预测,如相对湿度等,本文不再赘述。
3 建筑物逐时冷负荷的预测
简单的负荷预测方法是将当天的负荷作为第二天冷负荷的预测值。1985年Tamblyn利用测量仪器,如流量计和温差传感器产生准确的冷吨一小时冷负荷曲线,然后建立冷负荷与环境温度和内部负荷之间的函数关系,用于负荷预测[26].1989年Meredith等在利用BASIC程序进行蓄冷系统模拟时,根据ASHRAE通用负荷曲线(ASHRAE 1987),采用四阶多项式回归得到方程来预测模拟日的负荷[27]。
考试交流区成绩查询交流群(点击加入QQ群可快速加群交流成绩查询相关信息我们会及时在群里通知):
温馨提示:有任何报考及考试相关疑问,可添加网校专业老师个人微信号“edu24olxu”咨询。!考生可下载手机APP,随时掌握考试资讯!
扫一扫上面的二维码,添加老师个人微信号,所有课程七折开通
相关推荐:相关文章
如果本站所转载内容不慎侵犯了您的权益,请与我们联系,我们将会及时处理。如转载本站内容,请注明来源:一级建造师考试网(www.jzsedu.org)。
环球网校一级建造师历年通过率比较
张君老师 |
张君老师:建造师管理授课老师,硕士。课堂气氛活跃,善于调动学员积极性,被学员称为神君老师。..[详细] |
陈明教授 |
陈明:市政授课老师。有“市政之神”和“建造师市政第一人”的美誉。工程实践培训经验丰富,授课思路清晰..[详细] |